AN NET MAP PRESENTATION FOR

$$f(z) = \frac{3z^4 - 2z^2 + 3}{4(z^3 - z)}$$

We construct a finite subdivision rule for

$$f(z) = \frac{3z^4 - 2z^2 + 3}{4(z^3 - z)} = z - \frac{z^4 - 2z^2 - 3}{4(z^3 - z)} = z - \frac{p(z)}{p'(z)}.$$

We have that

$$f'(z) = \frac{p(z)p''(z)}{p'(z)^2} = \frac{(z^2 - 3)(z^2 + 1)4(3z^2 - 1)}{(4(z^3 - z))^2}.$$

Fixed Points: $\pm\sqrt{3}$, $\pm i$, ∞ Critical Points: $\pm 1/\sqrt{3}$, $\pm\sqrt{3}$, $\pm i$ Postcritical Points: $\pm\sqrt{3}$, $\pm i$ $f(-1) = f(0) = f(1) = \infty$

We see that f maps the closed interval $[\sqrt{3}, \infty]$ homeomorphically to itself. Using the fact that the only real critical points of f have multiplicity 2 and are at $\pm 1/\sqrt{3}$ and $\pm\sqrt{3}$, we see that f maps $\mathbb{R} \cup \{\infty\}$ to $[-\infty, -\sqrt{3}] \cup [\sqrt{3}, \infty]$ in 4-to-1 fashion. Similarly, f maps $\mathbb{R}i \cup \{i\infty\}$ to $[-i\infty, -i] \cup [i, i\infty]$ in 2-to-1 fashion. In addition, there are two disjoint arcs in \mathbb{C} which meet $\mathbb{R} \cup \mathbb{R}i$ at ± 1 which f maps homeomorphically to $[-i\infty, -i] \cup [i, i\infty]$.

We conclude that the union of the intervals $[-\infty, -\sqrt{3}]$, $[\sqrt{3}, \infty]$, $[-i\infty, -i]$ and $[i, i\infty]$ is a channel diagram Δ_0 for f. A portion of Δ_0 appears as a union of four black line segments in Figure 1, which was drawn using Mandel (www.mndynamics.com). Moreover, $f^{-1}(\Delta_0)$ is the union of \mathbb{R} , $\mathbb{R}i$, $\{\infty\}$ and the two arcs of the above paragraph. This proves that the finite subdivision rule presentation for f at the top of Figure 2 is correct up to homeomorphism.

Date: January 22, 2016.

FIGURE 1. Constructing a finite subdivision rule for f

FIGURE 2. Constructing an NET map presentation for f