
NET MAPS WHICH ARE NEWTON MAPS

WALTER PARRY

We determine all NET maps which are Newton maps up to Thurston equivalence. NET
maps which are Newton maps have degree either 3 or 4. There are two Thurston equivalence
classes with degree 3 and one with degree 4. The two equivalence classes with degree 3 have
different static portraits, and so they belong to different modular group Hurwitz classes,
those represented by 31HClass3 and 31HClass7. The one with degree 4 belongs to the
modular group Hurwitz class represented by 41HClass23. Here are three representative
rational functions.

f(z) =
6z3 + 1

9z2 − 2
f(z) =

2z3 + 1

3z2

f(z) =
3z4 − 2z2 + 3

4(z3 − 3z)

We begin with a definition and some fundamental results. In Definition 1.1 of [1] Mikulich,

Rückert and Schleicher define a Newton map to be a rational function f : Ĉ → Ĉ of degree
d ≥ 3 for which ∞ is a repelling fixed point and for each fixed point ξ ∈ C there exists an
integer m ≥ 1 such that f ′(ξ) = m−1

m
. Head’s Theorem (Proposition 1.2 of [1]) states that

a rational map f of degree d ≥ 3 is a Newton map if and only if there exists a polynomial

p : C→ C such that f(z) = z− p(z)
p′(z)

. In this situation, the fixed points of f in C are the roots

of p and f ′(z) = p(z)p′′(z)
p′(z)2

. Corollary 14.5 of Milnor’s book [2] states that if a rational map

f is postcritically finite, then every periodic orbit of f is either repelling or superattracting.

Thus if f(z) = z − p(z)
p′(z)

is a postcritically finite Newton map for some polynomial p, then

the above integers m are all 1 and the roots of p are distinct. The roots of p are distinct if
and only if f and p have the same degree.

Now we determine all degrees of NET maps which are Newton maps. Let f be a NET
map which is a Newton map. The previous paragraph shows that there exists a polynomial

p with distinct roots whose degree equals the degree of f such that f(z) = z − p(z)
p′(z)

. The

roots of p are fixed critical points of f . So the roots of p are postcritical points of f . Since f
has four postcritical points, the degree of f is at most 4. So the degree of f is either 3 or 4.

Our next goal is to determine all NET maps with degree 3 which are Newton maps. Let

f(z) = z − p(z)
p′(z)

be a NET map with degree 3 which is a Newton map. So p is a polynomial

with degree 3. Suppose that p(z) = az3 + bz2 + cz + d with a, b, c, d ∈ C and a 6= 0. So

f(z) = z − az3 + bz2 + cz + d

3az2 + 2bz + c
.

We may divide the numerator and denominator of the fraction by a. In effect, we may
assume that a = 1. Now with a = 1, we conjugate f to replace it with f(z − b/3) + b/3. In
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effect, we may assume that b = 0. Now we conjugate f by a dilation z 7→ αz. As a result
we may assume that either c = −1 or c = 0 and d = −1.

This provides one example: the one with a = 1, b = c = 0 and d = −1. It is

f(z) = z − z3 − 1

3z2
=

2z3 + 1

3z2
.

To check that it is a NET map, we note that the critical points of f are 0 and the third
roots of 1. The local degree of f at each of these points is 2. Furthermore, the third roots
of 1 are fixed points and f(0) =∞, which is a fixed point. So the local degree of f at every
critical point is 2, and f has four postcritical points. Thus f is a NET map.

Now we seek another example with degree 3 for which p(z) = z3 − z + d for some d ∈ C.
So

f(z) = z − z3 − z + d

3z2 − 1
=

2z3 − d
3z2 − 1

.

In this case, the critical points of f consist of the roots of p and 0. We have that f(0) = d.
This is not a root of p, for otherwise f would have only three postcritical points. So d is a
postcritical point of f other than a root of p. In particular, d 6= 0. It can’t be fixed by f , so
f(d) must be a root of p. So 2d3−d

3d2−1 is a root of p. We next evaluate p at this value, equate to
0 and solve for d. This can be done by hand or, more easily, by computer. We find that the
only solutions are d = 0 and d = ±

√
3/8. We have seen that d 6= 0. The values d = ±

√
3/8

yield NET maps which are Newton maps. We note that conjugating f(z) to −f(−z) takes d
to −d, and so these two rational maps belong to the same Thurston class. We use the value
d = −

√
3/8 and conjugate f by z 7→

√
3/2z to obtain

f(z) =
6z3 + 1

9z2 − 2
.

This is a NET map which is a Newton map.
Now we turn our attention to degree 4. We argue as for degree 3 that we may assume that

p is monic. One verifies that because the local degree of f at every critical point is 2, the
map f has six critical points and the polynomial p′′ has two distinct roots. We conjugate f
by a linear map so that we may assume that the roots of p′′ are ±1. So

p′′(z) = 12z2 − 12 p′(z) = 4z3 − 12z + a p(z) = z4 − 6z2 + az + b

for some a, b ∈ C. The postcritical set of f must consist of the four roots of p. So f maps
each of its critical points to a root of p. The critical points of f consist of the roots of p
together with the roots of p′′, namely, ±1. We have that

f(1) = 1− −5 + a+ b

a− 8
f(−1) = −1− −5− a+ b

a+ 8

=
b+ 3

8− a
=
−b− 3

8 + a
.

We evaluate p at these two values, equate to 0 and solve for a and b by computer. There are
four solutions:

a = 0 a = 0 a = 16 a = −16

b = −27 b = 5 b = 21 b = 21.
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But either 1 or −1 is a root of p for all but the first solution, resulting in a critical point of
f with local degree greater than 2. So only the first solution can yield a NET map which is
a Newton map. One verifies that the first solution does indeed yield a NET map which is a
Newton map. We obtain

f(z) = z − z4 − 6z2 − 27

4z3 − 12z
=

3

4

z4 − 2z2 + 9

z3 − 3z
.

Conjugating this by z 7→
√

3z, we obtain

f(z) =
3z4 − 2z2 + 3

4(z3 − z)
.
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