These Thurston maps are NET maps for every choice of translation term. They are primitive and have degree 12. PURE MODULAR GROUP HURWITZ EQUIVALENCE CLASSES FOR TRANSLATIONS {0} {lambda1} {lambda2} {lambda1+lambda2} These pure modular group Hurwitz classes each contain infinitely many Thurston equivalence classes. The number of pure modular group Hurwitz classes in this modular group Hurwitz class is 12. ALL THURSTON MULTIPLIERS c/d IN UNREDUCED FORM 0/1, 0/2, 0/4, 0/12, 1/12, 1/6, 1/4, 1/3, 1/1, 2/2, 3/3, 3/1, 4/1 EXCLUDED INTERVALS FOR THE HALF-SPACE COMPUTATION (-infinity,-0.068008) (-0.067975,-0.065408) (-0.065377,-0.063158) (-0.061856,-0.059865) (-0.059840,-0.057841) (-0.057817,-0.056484) (-0.054657,-0.053464) (-0.053444,-0.051844) (-0.051825,-0.050751) (-0.049271,-0.048300) (-0.048283,-0.046973) (-0.046957,-0.046074) (-0.044851,-0.044045) (-0.044031,-0.042939) (-0.042926,-0.042187) (-0.041159,-0.040479) (-0.040467,-0.039543) (-0.037437,-0.036645) (-0.034829,-0.034143) (-0.032561,-0.031960) (-0.030570,-0.030040) (-0.028809,-0.028338) (-0.027240,-0.026818) (-0.025832,-0.025453) (-0.024563,-0.024220) (-0.023413,-0.023101) (-0.022366,-0.022081) (-0.021408,-0.021147) (-0.020529,-0.020289) ( 0.020289,0.020529 ) ( 0.021147,0.021408 ) ( 0.022081,0.022366 ) ( 0.023101,0.023413 ) ( 0.024220,0.024563 ) ( 0.025453,0.025832 ) ( 0.026818,0.027240 ) ( 0.028338,0.028809 ) ( 0.030040,0.030570 ) ( 0.031960,0.032561 ) ( 0.034143,0.034829 ) ( 0.036645,0.037437 ) ( 0.039543,0.040467 ) ( 0.040479,0.041159 ) ( 0.042187,0.042926 ) ( 0.042939,0.044031 ) ( 0.044045,0.044851 ) ( 0.046074,0.046957 ) ( 0.046973,0.048283 ) ( 0.048300,0.049271 ) ( 0.050751,0.051825 ) ( 0.051844,0.053444 ) ( 0.053464,0.054657 ) ( 0.056484,0.057817 ) ( 0.057841,0.059840 ) ( 0.059865,0.061856 ) ( 0.063158,infinity ) The half-space computation does not determine rationality. EXCLUDED INTERVALS FOR JUST THE SUPPLEMENTAL HALF-SPACE COMPUTATION INTERVAL COMPUTED FOR HST OR EXTENDED HST (-0.073361,-0.062531) -17/250 HST (-0.062633,-0.062367) -1/16 EXTENDED HST (-0.062500,-0.061224) -6/97 HST (-0.064604,-0.055030) -17/284 HST (-0.062211,-0.047259) -4/73 HST (-0.050561,-0.043357) -17/362 HST (-0.046241,-0.039613) -17/396 HST (-0.042601,-0.036465) -17/430 HST (-0.039532,-0.038904) -2/51 HST (-0.038512,-0.038411) -1/26 EXTENDED HST (-0.036636,-0.036096) -2/55 HST (-0.041024,-0.030996) -4/111 HST (-0.035758,-0.035671) -1/28 EXTENDED HST (-0.031088,-0.030769) -7/226 HST (-0.030964,-0.030577) -2/65 HST (-0.033047,-0.028082) -17/556 HST (-0.028169,-0.027907) -3/107 HST (-0.028037,-0.027778) -6/215 HST (-0.027804,-0.027752) -1/36 EXTENDED HST (-0.031443,-0.023699) -4/145 HST (-0.027551,-0.027245) -2/73 HST (-0.026993,-0.020322) -4/169 HST (-0.023643,-0.023417) -2/85 HST (-0.199961,0.333550 ) 0/1 EXTENDED HST The supplemental half-space computation shows that these NET maps are rational. SLOPE FUNCTION INFORMATION There are no slope function fixed points. Number of excluded intervals computed by the fixed point finder: 1331 No nontrivial cycles were found. The slope function maps some slope to the nonslope. The slope function orbit of every slope p/q with |p| <= 50 and |q| <= 50 ends in the nonslope. If the slope function maps slope p/q to slope p'/q', then |q'| <= |q| for every slope p/q with |p| <= 50 and |q| <= 50. FUNDAMENTAL GROUP WREATH RECURSIONS When the translation term of the affine map is 0: NewSphereMachine( "a=<1,b,b,c^-1*b,b,1,1,1,1,b^-1*c,b^-1*c,b^-1>(2,12)(3,11)(4,10)(5,9)(6,8)", "b=(1,12)(2,11)(3,10)(4,9)(5,8)(6,7)", "c=(1,12)(2,11)(3,10)(4,9)(5,8)(6,7)", "d=<1,a*b,c^-1,c^-1,1,1,1,1,1,c,c*d,c*d>(2,12)(3,11)(4,10)(5,9)(6,8)", "a*b*c*d"); When the translation term of the affine map is lambda1: NewSphereMachine( "a=(1,2)(3,12)(4,11)(5,10)(6,9)(7,8)", "b=<1,b,b,c^-1*b,b,1,1,1,1,b^-1*c,b^-1*c,b^-1>(2,12)(3,11)(4,10)(5,9)(6,8)", "c=<1,a*b,c^-1,c^-1,1,1,1,1,1,c,c*d,c*d>(2,12)(3,11)(4,10)(5,9)(6,8)", "d=<1,1,a*b,c^-1,1,1,1,1,1,1,c,c*d>(1,2)(3,12)(4,11)(5,10)(6,9)(7,8)", "a*b*c*d"); When the translation term of the affine map is lambda2: NewSphereMachine( "a=(1,11)(2,10)(3,9)(4,8)(5,7)", "b=(1,12)(2,11)(3,10)(4,9)(5,8)(6,7)", "c=(1,12)(2,11)(3,10)(4,9)(5,8)(6,7)", "d=(1,11)(2,10)(3,9)(4,8)(5,7)", "a*b*c*d"); When the translation term of the affine map is lambda1+lambda2: NewSphereMachine( "a=(1,12)(2,11)(3,10)(4,9)(5,8)(6,7)", "b=<1,a*b,c^-1,c^-1,1,1,1,1,1,c,c*d,c*d>(2,12)(3,11)(4,10)(5,9)(6,8)", "c=<1,b,b,c^-1*b,b,1,1,1,1,b^-1*c,b^-1*c,b^-1>(2,12)(3,11)(4,10)(5,9)(6,8)", "d=(1,12)(2,11)(3,10)(4,9)(5,8)(6,7)", "a*b*c*d");