These Thurston maps are NET maps for every choice of translation term. They are primitive and have degree 40. ALL THURSTON MULTIPLIERS c/d IN UNREDUCED FORM 0/1, 0/5, 0/10, 0/20, 0/40, 1/40, 1/8, 2/10, 2/8, 2/5, 2/4, 4/5, 2/2, 4/4 6/4, 2/1, 6/2, 4/1, 8/2, 6/1, 16/2, 12/1, 14/1, 18/1, 22/1, 26/1, 28/1, 36/1 EXCLUDED INTERVALS FOR THE HALF-SPACE COMPUTATION (-infinity,-0.507072) (-0.492760,infinity ) The half-space computation does not determine rationality. EXCLUDED INTERVALS FOR JUST THE SUPPLEMENTAL HALF-SPACE COMPUTATION INTERVAL COMPUTED FOR HST OR EXTENDED HST (-0.508211,-0.505889) -36/71 HST (-0.505932,-0.505834) -43/85 HST (-0.506644,-0.504847) -44/87 HST (-0.505613,-0.504093) -105/208 HST (-0.504794,-0.504730) -53/105 HST (-0.504459,-0.495619) -1/2 EXTENDED HST (-0.495639,-0.494059) -48/97 HST (-0.494773,-0.492893) -41/83 HST (-0.493857,-0.491665) -35/71 HST The supplemental half-space computation shows that these NET maps are rational. SLOPE FUNCTION INFORMATION There are no slope function fixed points. Number of excluded intervals computed by the fixed point finder: 8371 No nontrivial cycles were found. The slope function maps some slope to the nonslope. The slope function orbit of every slope p/q with |p| <= 50 and |q| <= 50 ends in the nonslope. FUNDAMENTAL GROUP WREATH RECURSIONS When the translation term of the affine map is 0: NewSphereMachine( "a=(1,39)(2,38)(3,37)(4,36)(5,35)(6,34)(7,33)(8,32)(9,31)(10,30)(11,29)(12,28)(13,27)(14,26)(15,25)(16,24)(17,23)(18,22)(19,21)", "b=(1,39)(2,38)(3,37)(4,36)(5,35)(6,34)(7,33)(8,32)(9,31)(10,30)(11,29)(12,28)(13,27)(14,26)(15,25)(16,24)(17,23)(18,22)(19,21)", "c=(1,40)(2,39)(3,38)(4,37)(5,36)(6,35)(7,34)(8,33)(9,32)(10,31)(11,30)(12,29)(13,28)(14,27)(15,26)(16,25)(17,24)(18,23)(19,22)(20,21)", "d=(1,40)(2,39)(3,38)(4,37)(5,36)(6,35)(7,34)(8,33)(9,32)(10,31)(11,30)(12,29)(13,28)(14,27)(15,26)(16,25)(17,24)(18,23)(19,22)(20,21)", "a*b*c*d"); When the translation term of the affine map is lambda1: NewSphereMachine( "a=<1,c^-1,c^-1,c^-1,c^-1,c^-1,c^-1,c^-1,c^-1,c^-1,c^-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,c,c,c,c,c,c,c,c,c,c>(2,40)(3,39)(4,38)(5,37)(6,36)(7,35)(8,34)(9,33)(10,32)(11,31)(12,30)(13,29)(14,28)(15,27)(16,26)(17,25)(18,24)(19,23)(20,22)", "b=<1,b,c^-1*b,c^-1*b,c^-1*b,c^-1*b,c^-1*b,c^-1*b,c^-1*b,c^-1*b,c^-1*b,b,b,b,b,b,b,b,b,b,b,b^-1,b^-1,b^-1,b^-1,b^-1,b^-1,b^-1,b^-1,b^-1,b^-1*c,b^-1*c,b^-1*c,b^-1*c,b^-1*c,b^-1*c,b^-1*c,b^-1*c,b^-1*c,b^-1>(2,40)(3,39)(4,38)(5,37)(6,36)(7,35)(8,34)(9,33)(10,32)(11,31)(12,30)(13,29)(14,28)(15,27)(16,26)(17,25)(18,24)(19,23)(20,22)", "c=(1,40)(2,39)(3,38)(4,37)(5,36)(6,35)(7,34)(8,33)(9,32)(10,31)(11,30)(12,29)(13,28)(14,27)(15,26)(16,25)(17,24)(18,23)(19,22)(20,21)", "d=(1,40)(2,39)(3,38)(4,37)(5,36)(6,35)(7,34)(8,33)(9,32)(10,31)(11,30)(12,29)(13,28)(14,27)(15,26)(16,25)(17,24)(18,23)(19,22)(20,21)", "a*b*c*d"); When the translation term of the affine map is lambda2: NewSphereMachine( "a=(1,40)(2,39)(3,38)(4,37)(5,36)(6,35)(7,34)(8,33)(9,32)(10,31)(11,30)(12,29)(13,28)(14,27)(15,26)(16,25)(17,24)(18,23)(19,22)(20,21)", "b=(1,40)(2,39)(3,38)(4,37)(5,36)(6,35)(7,34)(8,33)(9,32)(10,31)(11,30)(12,29)(13,28)(14,27)(15,26)(16,25)(17,24)(18,23)(19,22)(20,21)", "c=(1,39)(2,38)(3,37)(4,36)(5,35)(6,34)(7,33)(8,32)(9,31)(10,30)(11,29)(12,28)(13,27)(14,26)(15,25)(16,24)(17,23)(18,22)(19,21)", "d=(1,39)(2,38)(3,37)(4,36)(5,35)(6,34)(7,33)(8,32)(9,31)(10,30)(11,29)(12,28)(13,27)(14,26)(15,25)(16,24)(17,23)(18,22)(19,21)", "a*b*c*d"); When the translation term of the affine map is lambda1+lambda2: NewSphereMachine( "a=(1,40)(2,39)(3,38)(4,37)(5,36)(6,35)(7,34)(8,33)(9,32)(10,31)(11,30)(12,29)(13,28)(14,27)(15,26)(16,25)(17,24)(18,23)(19,22)(20,21)", "b=(1,40)(2,39)(3,38)(4,37)(5,36)(6,35)(7,34)(8,33)(9,32)(10,31)(11,30)(12,29)(13,28)(14,27)(15,26)(16,25)(17,24)(18,23)(19,22)(20,21)", "c=<1,b,c^-1*b,c^-1*b,c^-1*b,c^-1*b,c^-1*b,c^-1*b,c^-1*b,c^-1*b,c^-1*b,b,b,b,b,b,b,b,b,b,b,b^-1,b^-1,b^-1,b^-1,b^-1,b^-1,b^-1,b^-1,b^-1,b^-1*c,b^-1*c,b^-1*c,b^-1*c,b^-1*c,b^-1*c,b^-1*c,b^-1*c,b^-1*c,b^-1>(2,40)(3,39)(4,38)(5,37)(6,36)(7,35)(8,34)(9,33)(10,32)(11,31)(12,30)(13,29)(14,28)(15,27)(16,26)(17,25)(18,24)(19,23)(20,22)", "d=<1,b*c*b,c^-1*b^2,c^-1*b^2,c^-1*b^2,c^-1*b^2,c^-1*b^2,c^-1*b^2,c^-1*b^2,c^-1*b^2,c^-1*b^2,b^2,b^2,b^2,b^2,b^2,b^2,b^2,b^2,b^2,1,b^-2,b^-2,b^-2,b^-2,b^-2,b^-2,b^-2,b^-2,b^-2,b^-2*c,b^-2*c,b^-2*c,b^-2*c,b^-2*c,b^-2*c,b^-2*c,b^-2*c,b^-2*c,b^-1*d*a>(2,40)(3,39)(4,38)(5,37)(6,36)(7,35)(8,34)(9,33)(10,32)(11,31)(12,30)(13,29)(14,28)(15,27)(16,26)(17,25)(18,24)(19,23)(20,22)", "a*b*c*d");