These Thurston maps are NET maps for every choice of translation term. They have degree 40. They are imprimitive, each factoring as a NET map with degree 20 followed by a Euclidean NET map with degree 2. PURE MODULAR GROUP HURWITZ EQUIVALENCE CLASSES FOR TRANSLATIONS {0} {lambda1} {lambda2} {lambda1+lambda2} These pure modular group Hurwitz classes each contain only finitely many Thurston equivalence classes. However, this modular group Hurwitz class contains infinitely many Thurston equivalence classes. The number of pure modular group Hurwitz classes in this modular group Hurwitz class is 12. ALL THURSTON MULTIPLIERS c/d IN UNREDUCED FORM 0/40, 2/20, 2/10, 2/8, 2/5, 2/4, 4/5, 2/2, 2/1, 6/2, 4/1, 6/1, 14/2, 12/1 14/1, 18/1, 22/1, 26/1 EXCLUDED INTERVALS FOR THE HALF-SPACE COMPUTATION (-infinity,infinity) The half-space computation determines rationality. The supplemental half-space computation is not needed. These NET maps are rational. SLOPE FUNCTION INFORMATION There are no slope function fixed points p/q with |p| <= 50 and |q| <= 50. The fixed point finder is unable to determine whether there are any slope function fixed points. Number of excluded intervals computed by the fixed point finder: 19077 Here is their union. There are no slope function fixed points whose negative reciprocals lie in any of the following intervals. EXCLUDED INTERVALS FOR THE FIXED POINT COMPUTATION (-infinity,0.277692) ( 0.277692,infinity) No nontrivial cycles were found. The slope function maps some slope to the nonslope. The slope function orbit of every slope p/q with |p| <= 50 and |q| <= 50 ends in the nonslope. If the slope function maps slope p/q to slope p'/q', then |q'| <= |q| for every slope p/q with |p| <= 50 and |q| <= 50. FUNDAMENTAL GROUP WREATH RECURSIONS When the translation term of the affine map is 0: NewSphereMachine( "a=(2,40)(3,39)(4,38)(5,37)(6,36)(7,35)(8,34)(9,33)(10,32)(11,31)(12,30)(13,29)(14,28)(15,27)(16,26)(17,25)(18,24)(19,23)(20,22)", "b=(1,40)(2,39)(3,38)(4,37)(5,36)(6,35)(7,34)(8,33)(9,32)(10,31)(11,30)(12,29)(13,28)(14,27)(15,26)(16,25)(17,24)(18,23)(19,22)(20,21)", "c=<1,c^-1,c^-1,c^-1,c^-1,c^-1,c^-1,c^-1,c^-1,c^-1,c^-1,c^-1,c^-1,c^-1,c^-1,c^-1,c^-1,c^-1,c^-1,c^-1,c,c,c,c,c,c,c,c,c,c,c,c,c,c,c,c,c,c,c,c>(2,40)(3,39)(4,38)(5,37)(6,36)(7,35)(8,34)(9,33)(10,32)(11,31)(12,30)(13,29)(14,28)(15,27)(16,26)(17,25)(18,24)(19,23)(20,22)", "d=(1,2)(3,40)(4,39)(5,38)(6,37)(7,36)(8,35)(9,34)(10,33)(11,32)(12,31)(13,30)(14,29)(15,28)(16,27)(17,26)(18,25)(19,24)(20,23)(21,22)", "a*b*c*d"); When the translation term of the affine map is lambda1: NewSphereMachine( "a=(1,40)(2,39)(3,38)(4,37)(5,36)(6,35)(7,34)(8,33)(9,32)(10,31)(11,30)(12,29)(13,28)(14,27)(15,26)(16,25)(17,24)(18,23)(19,22)(20,21)", "b=(1,39)(2,38)(3,37)(4,36)(5,35)(6,34)(7,33)(8,32)(9,31)(10,30)(11,29)(12,28)(13,27)(14,26)(15,25)(16,24)(17,23)(18,22)(19,21)", "c=(1,40)(2,39)(3,38)(4,37)(5,36)(6,35)(7,34)(8,33)(9,32)(10,31)(11,30)(12,29)(13,28)(14,27)(15,26)(16,25)(17,24)(18,23)(19,22)(20,21)", "d=<1,c^-1,c^-1,c^-1,c^-1,c^-1,c^-1,c^-1,c^-1,c^-1,c^-1,c^-1,c^-1,c^-1,c^-1,c^-1,c^-1,c^-1,c^-1,c^-1,c,c,c,c,c,c,c,c,c,c,c,c,c,c,c,c,c,c,c,c>(2,40)(3,39)(4,38)(5,37)(6,36)(7,35)(8,34)(9,33)(10,32)(11,31)(12,30)(13,29)(14,28)(15,27)(16,26)(17,25)(18,24)(19,23)(20,22)", "a*b*c*d"); When the translation term of the affine map is lambda2: NewSphereMachine( "a=(1,40)(2,39)(3,38)(4,37)(5,36)(6,35)(7,34)(8,33)(9,32)(10,31)(11,30)(12,29)(13,28)(14,27)(15,26)(16,25)(17,24)(18,23)(19,22)(20,21)", "b=<1,c^-1,c^-1,c^-1,c^-1,c^-1,c^-1,c^-1,c^-1,c^-1,c^-1,c^-1,c^-1,c^-1,c^-1,c^-1,c^-1,c^-1,c^-1,c^-1,c,c,c,c,c,c,c,c,c,c,c,c,c,c,c,c,c,c,c,c>(2,40)(3,39)(4,38)(5,37)(6,36)(7,35)(8,34)(9,33)(10,32)(11,31)(12,30)(13,29)(14,28)(15,27)(16,26)(17,25)(18,24)(19,23)(20,22)", "c=(1,40)(2,39)(3,38)(4,37)(5,36)(6,35)(7,34)(8,33)(9,32)(10,31)(11,30)(12,29)(13,28)(14,27)(15,26)(16,25)(17,24)(18,23)(19,22)(20,21)", "d=(1,39)(2,38)(3,37)(4,36)(5,35)(6,34)(7,33)(8,32)(9,31)(10,30)(11,29)(12,28)(13,27)(14,26)(15,25)(16,24)(17,23)(18,22)(19,21)", "a*b*c*d"); When the translation term of the affine map is lambda1+lambda2: NewSphereMachine( "a=(1,39)(2,38)(3,37)(4,36)(5,35)(6,34)(7,33)(8,32)(9,31)(10,30)(11,29)(12,28)(13,27)(14,26)(15,25)(16,24)(17,23)(18,22)(19,21)", "b=(1,40)(2,39)(3,38)(4,37)(5,36)(6,35)(7,34)(8,33)(9,32)(10,31)(11,30)(12,29)(13,28)(14,27)(15,26)(16,25)(17,24)(18,23)(19,22)(20,21)", "c=(1,39)(2,38)(3,37)(4,36)(5,35)(6,34)(7,33)(8,32)(9,31)(10,30)(11,29)(12,28)(13,27)(14,26)(15,25)(16,24)(17,23)(18,22)(19,21)", "d=(1,38)(2,37)(3,36)(4,35)(5,34)(6,33)(7,32)(8,31)(9,30)(10,29)(11,28)(12,27)(13,26)(14,25)(15,24)(16,23)(17,22)(18,21)(19,20)(39,40)", "a*b*c*d"); ****************************INTEGER OVERFLOW REPORT***************************** Imminent integer overflow occurred during the computation of a fixed point excluded interval about 288475/1063012. Imminent integer overflow occurred during the computation of a fixed point excluded interval about 288475/1063012. Imminent integer overflow occurred during the computation of a fixed point excluded interval about 288475/1063012. Imminent integer overflow halted evaluation of the slope function at slope -3515315/953969 while computing a fixed point excluded interval about 288475/1063012. Imminent integer overflow occurred during the computation of a fixed point excluded interval about 288475/1063012. Imminent integer overflow halted evaluation of the slope function at slope -4463177/1239387 during the search for all slope function fixed points. Imminent integer overflow occurred during the computation of a fixed point excluded interval about 186865/672514. Imminent integer overflow occurred during the computation of a fixed point excluded interval about 37207/133164. Imminent integer overflow occurred during the computation of a fixed point excluded interval about 37207/133164. Imminent integer overflow caused the modular group computation to abort.