These Thurston maps are NET maps for every choice of translation term. They have degree 38. They are imprimitive, each factoring as a NET map with degree 19 followed by a Euclidean NET map with degree 2. PURE MODULAR GROUP HURWITZ EQUIVALENCE CLASSES FOR TRANSLATIONS {0,lambda1+lambda2} {lambda1,lambda2} Since no Thurston multiplier is 1, this modular group Hurwitz class contains only finitely many Thurston equivalence classes. The number of pure modular group Hurwitz classes in this modular group Hurwitz class is 8. ALL THURSTON MULTIPLIERS c/d IN UNREDUCED FORM 1/38, 2/19, 1/2, 3/2, 2/1, 5/2, 7/2, 11/2, 6/1, 15/2, 10/1, 14/1, 18/1, 22/1 26/1, 30/1 EXCLUDED INTERVALS FOR THE HALF-SPACE COMPUTATION (-infinity,infinity) The half-space computation determines rationality. The supplemental half-space computation is not needed. These NET maps are rational. SLOPE FUNCTION INFORMATION There are no slope function fixed points because every loop multiplier of the mod 2 slope correspondence graph is at least 1 and the map is rational. NONTRIVIAL CYCLES 1/0 -> 0/1 -> 1/0 -1/1 -> 2/1 -> -1/1 1/1 -> -2/1 -> 1/1 The slope function maps every slope to a slope: no slope maps to the nonslope. The slope function orbit of every slope p/q with |p| <= 50 and |q| <= 50 ends in one of the above cycles. FUNDAMENTAL GROUP WREATH RECURSIONS When the translation term of the affine map is 0: NewSphereMachine( "a=<1,d^-1,d*a,b,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1>(2,3)(4,5)(6,7)(8,9)(10,11)(12,13)(14,15)(16,17)(18,19)(20,21)(22,23)(24,25)(26,27)(28,29)(30,31)(32,33)(34,35)(36,37)", "b=<1,1,d,1,c,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1>(2,3)(4,5)(6,7)(8,9)(10,11)(12,13)(14,15)(16,17)(18,19)(20,21)(22,23)(24,25)(26,27)(28,29)(30,31)(32,33)(34,35)(36,37)", "c=<1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1>(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)", "d=<1,1,d*a,b*c,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1>(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)", "a*b*c*d"); When the translation term of the affine map is lambda1: NewSphereMachine( "a=<1,1,d,b*c,b^-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1>(2,3)(4,5)(6,7)(8,9)(10,11)(12,13)(14,15)(16,17)(18,19)(20,21)(22,23)(24,25)(26,27)(28,29)(30,31)(32,33)(34,35)(36,37)", "b=<1,a,1,b,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1>(2,3)(4,5)(6,7)(8,9)(10,11)(12,13)(14,15)(16,17)(18,19)(20,21)(22,23)(24,25)(26,27)(28,29)(30,31)(32,33)(34,35)(36,37)", "c=<1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1>(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)", "d=<1,1,d*a,b*c,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1>(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)", "a*b*c*d"); When the translation term of the affine map is lambda2: NewSphereMachine( "a=<1,1,b*c,d*a,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1>(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)", "b=<1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1>(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)", "c=<1,1,d,1,c,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1>(2,3)(4,5)(6,7)(8,9)(10,11)(12,13)(14,15)(16,17)(18,19)(20,21)(22,23)(24,25)(26,27)(28,29)(30,31)(32,33)(34,35)(36,37)", "d=<1,a,1,c^-1,b*c,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1>(2,3)(4,5)(6,7)(8,9)(10,11)(12,13)(14,15)(16,17)(18,19)(20,21)(22,23)(24,25)(26,27)(28,29)(30,31)(32,33)(34,35)(36,37)", "a*b*c*d"); When the translation term of the affine map is lambda1+lambda2: NewSphereMachine( "a=<1,1,b*c,d*a,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1>(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)", "b=<1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1>(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)", "c=<1,a,1,b,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1>(2,3)(4,5)(6,7)(8,9)(10,11)(12,13)(14,15)(16,17)(18,19)(20,21)(22,23)(24,25)(26,27)(28,29)(30,31)(32,33)(34,35)(36,37)", "d=<1,d*a,a^-1,1,c,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1>(2,3)(4,5)(6,7)(8,9)(10,11)(12,13)(14,15)(16,17)(18,19)(20,21)(22,23)(24,25)(26,27)(28,29)(30,31)(32,33)(34,35)(36,37)", "a*b*c*d");