Modular Arithmetic, Grades 6 - 9

Blacksburg Math Circle

Warm-up Problem.

Let $a_1 = 7$ and $a_2 = 11$. We fix the divisor to be d = 5 in this problem.

- (a) Compute the remainder r_1 of a_1 . Compute the remainder r_2 of a_2 as well.
- (b) Is the remainder of $a_1 + a_2$ equal to $r_1 + r_2$?
- (c) For other choices of a_1 and a_2 , do you think the remainder of $a_1 + a_2$ is always equal to $r_1 + r_2$? If not, can you find a relation between $a_1 + a_2$ and $r_1 + r_2$?
- (d) Is the remainder of a_1a_2 equal to r_1r_2 ?
- (e) For other choices of a_1 and a_2 , do you think the remainder of a_1a_2 is always equal to r_1r_2 ? If not, can you find a relation between a_1a_2 and r_1r_2 ?

Definition: Let d be a positive integer. Two numbers a and b are called *congruent modulo* d if they have the same remainder when divided by d. i.e., $aq_1d + r$ and $b = q_2d + r$. We denote this by $a \equiv b \pmod{d}$.

Definition: The set consisting of the integers a modulo d is called the *congruence class* of the integer a, modulo d.

Problem 1.

Give the congruence classes of the following given modulus d.

- (a) d = 5
- (b) d = 12
- (c) Where is the congruence class from part (b) used regularly?
- (d) Since today is Saturday, find what day of the week it will be in 365 days?
- (e) What day of the week were you born on? (Hint: Don't forget leap years!)

Problem 2. Fill in the blanks:

- $(1) 55 \equiv _ \pmod{7}$
- (2) $2018 \equiv _ (\mod 3)$ (3) $406 \equiv _ (\mod 1056)$

Problem 3. What is the remainder of $2^{51} \pmod{5}$? How about $3^{2017} \pmod{7}$?

Problem 4.

Identify the last digit of $3^{3^{3^3}}$. (Hint: What would you choose for the modulus d?)

Problem 5.

Find a positive integer n such that $x \equiv 1 \pmod{3}$ and $x \equiv 3 \pmod{7}$. Can you list all such positive integers less than 50?

Problem 6.

Find a positive integer n such that $x \equiv 2 \pmod{4}$, $x \equiv 7 \pmod{5}$, and $x \equiv 4 \pmod{7}$.

Problem 7.

Let n be an integer that is not divisible by 3.

- (a) For n = 5, compute the remainder of $n^2 1 \pmod{3}$.
- (b) For n = 10, compute the remainder of $n^2 1 \pmod{3}$.
- (c) Try a few more examples. Based on your observations, formulate a conjecture.
- (d) Prove your conjecture.

Problem 8.

Let n be an odd integer.

- (a) For n = 3, compute the remainder of $n^2 \pmod{8}$.
- (b) For n = 13, compute the remainder of $n^2 \pmod{8}$.
- (c) Try a few more examples. Based on your observations, formulate a conjecture.
- (d) Prove your conjecture.

Problem 9.

Let n be an odd integer.

- (a) For n = 3, compute the remainder of $n(n + 2) \pmod{16}$.
- (b) For n = 13, compute the remainder of $n(n + 2) \pmod{16}$.
- (c) Try a few more examples. Based on your observations, formulate a conjecture.
- (d) Prove your conjecture.

Problem 10.

Let n be an odd integer.

- (a) For n = 5, compute the remainder of $1 + 2 + \cdots + n \pmod{n}$.
- (b) For n = 7, compute the remainder of $1 + 2 + \cdots + n \pmod{n}$.
- (c) What is your conjecture?
- (d) Prove your conjecture.

Problem 11.

Let n be an even integer.

- (a) For n = 4, compute the remainder of $1 + 2 + \cdots + n \pmod{n}$.
- (b) For n = 6, compute the remainder of $1 + 2 + \cdots + n \pmod{n}$.
- (c) What is your conjecture?
- (d) Prove your conjecture.