MATH 2204 : Introduction to Multivariable Calculus : Stewart 9E

	Section	Topic	Homework
Unit 1: 13 Lectures (50 min.)			
	12.1	3-D Coordinate Systems	$\begin{array}{\|l} \hline \text { pp. } 835-836 \# 6,7,14 \mathrm{bf}, 17,20,33 \text { (also sketch), } \\ 38 \text { (also sketch), } 42 \text { (also sketch), 44, } 49 \\ \hline \end{array}$
	12.2	Vectors	pp.844-845 \#5bdf, 13, 21, 23, 26, 27, 29, 31, 32, 35, 37
	12.3	Dot Product	$\begin{aligned} & \text { pp. } 852-854 \# 4,9,17,24 \text {, } \\ & 40\left(\text { also sketch } \mathbf{a}, \mathbf{b}, \operatorname{proj}_{\mathbf{a}} \mathbf{b}, \operatorname{comp}_{\mathbf{a}} \text { b) }, 43,49,51\right. \end{aligned}$
	12.4	Cross Product	pp.861-863 \#1, 8, 15, 16, 20, 27, 32, 39, 45a
	12.5	Equations of Lines and Planes	pp.872-874 \#4, 13, 16, 26, 28, 33, 44, 48, 58a, 72
	12.6	Cylinders and Quadric Surfaces	$\begin{aligned} & \text { pp. } 881-882 \# 4,5,11,16,17,18,19,20,22,28,29,39, \\ & 40,45,46 \end{aligned}$
\checkmark	14.1	Functions of Several Variables	pp.946-950 \#3c, 4c, 7, 10 (also find range), 15, 16 (also find range), 25 (first octant), 30, 31, 45, 48, 61, 62, 63
	14.2	Limits and Continuity	pp.960-961 \#8, 10, 22, 23, 25, 26, 49, 50, 51, 53
	14.3	Partial Derivatives	pp.969-970 \#2b, 4, 13, 18, 21, 28, 37, 42, 51, 56, 58
	14.4	Tangent Planes and Linear Approximations	pp.981-983 \#3, 8, 18 (linearization only), 27, 28, 40, 41, 47
Unit 2: 10 Lectures (50 min .)			
	15.1	Basic Double Integrals	pp.1049-1051 \#3b, 25, 28, 29, 33, 35, 48
	15.2	General Double Integrals	$\begin{aligned} & \text { pp.1060-1061 \#19, 20, } 39 \text { (set-up only), } 48,56,58,61, \\ & 64,71,74 \end{aligned}$
	15.3	Polar Coordinates	$\begin{aligned} & \text { pp. } 1067-1069 \# 8 \text { (sketch only), 10, 11, } 32 \\ & \text { set-up only: } 22,41,42,49 \end{aligned}$
	15.4	Applications of Double Integrals	p. 1078 \#8, 10 (set-up only), 15, 18 (set-up only)
	15.6	Triple Integrals	$\begin{aligned} & \text { pp.1092-1094 \#5, 31, } 32,35,38,51 \mathrm{ab} \\ & \text { set-up only: } 20,21,22,23,39 \text { (use } \mathrm{d} x \mathrm{~d} y \mathrm{~d} z \text {) } \end{aligned}$
	15.7	Cylindrical Coordinates	$\begin{aligned} & \text { pp. } 1100-1101 \# 2,3,11,12,19 \\ & \text { set-up only: } 21,27,32 \\ & \hline \end{aligned}$
	15.8	Spherical Coordinates	$\begin{aligned} & \text { pp.1106-1107 \#2, } 3,7,8,20,23 \\ & \text { set-up only: } 25,31,43,45 \\ & \hline \end{aligned}$
		Review Exercises	p. $1100 \# 24$ (use cylindrical and spherical) p. $1107 \# 32$ (use cylindrical and spherical) p. $1119 \# 25,28,34,36,40$ (choose the easiest method)
Unit 3: 12 Lectures (50 min .)			
	14.5	Chain Rule	pp.991-993 \#7, 14, 17 (assume g and h are differentiable), 18, 20, 28, 31, 38, 39, 42, 43b, 44
	14.6	Directional Derivatives and Gradient Vector	pp.1005-1007 \#1, 14, 17, 23, 30, 33, 39, 41, 47, 52, 56
	14.7	Maximum and Minimum Values	pp.1016-1017 \#2, 6, 13, 14, 16, 34, 35, 38
	14.8	Lagrange Multipliers	pp.1026-1028 \#3, 5, 9, 24, 28, 31, 42, 49, 57
-	13.1	Vector Functions and Space Curves	$\begin{aligned} & \text { pp. } 895-897 \# 1,3,8,11,12,19,21,25,26,40,50,52,53, \\ & 57,58 \end{aligned}$
	13.2	Derivatives and Integrals of Vector Functions	pp.902-903 \#3, 8, 17, 23, 28, 36, 39, 44
	13.3	Arc Length and Curvature	pp.913-914 \#3, 4, 13, 17, 20, 25, 28, 31, 36, 52, 53
	13.4	Motion in Space	pp.924-925 \#3, 8, 16, 21, 25, 28, 31, 39, 42

