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[1] Evaluate

∫ 1

0

∫ 2

2y

cos(x2) dx dy.

A) sin(4)− cos(4) + 1 B)
sin(4)

4
C) sin(1) D) sin(4) + cos(4)− 1

[2] Which of the following is an equation for the plane through the point (1, 1,−1) and parallel
to the plane x− y + z = 3?

A) x+ y − z = −1 B) x+ y − z = 3 C) −x+ y − z = 1 D) x− y + z = −3
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[3] Evaluate

∫ √2

0

∫ x

0

√
x2 + y2 dy dx+

∫ 2

√
2

∫ √4−x2

0

√
x2 + y2 dy dx.

A)
2π

3
B)

π

2
C)

√
2π

6
D) π

[4] Let f(x, y) =
x2y

x4 + y2
. Which of the following statements is true about lim

(x,y)→(0,0)
f(x, y)?

A) lim
(x,y)→(0,0)

f(x, y) does not exist because lim
x→0

f(x, 0) does not exist.

B) lim
(x,y)→(0,0)

f(x, y) = 0 because lim
x→0

f(x, kx) = 0 for every k.

C) lim
(x,y)→(0,0)

f(x, y) does not exist because lim
x→0

f(x, 0) is not equal to lim
x→0

f(x, x2).

D) lim
(x,y)→(0,0)

f(x, y) does not exist because f(x, y) is undefined at (0, 0).

[5] Find the unit tangent vector T (t) to the curve r(t) = 〈sin t, 1 + t, cos t〉 when t = 0.

A)

〈
0,

1√
2
,

1√
2

〉
B) 〈0, 0,−1〉 C)

〈
−1√

2
,

1√
2
, 0

〉
D)

〈
1√
2
,

1√
2
, 0

〉

[6] A ball is thrown into the air with initial velocity v(0) = 3i + 8k. The acceleration is given by
a(t) = 8j − 16k. How far away is the ball from its initial position at t = 1?

A) 2
√

3 B) 3 C) 4
√

5 D) 5
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[7] Two right circular cylindrical storage tanks A and B have volume V = πr2h with height 25m
and radius 5m. The radius of tank A is increased by a small amount while the height of
tank B is increased by the same small amount. Which of the following statements is true?

A) The volume of tank A increased approximately 10 times more than the volume of tank B.

B) The volume of tank B increased approximately 10 times more than the volume of tank A.

C) The volume of tank A increased approximately 5 times more than the volume of tank B.

D) The volume of tank B increased approximately 5 times more than the volume of tank A.

[8] Rewrite

∫ 2

−2

∫ 4

y2

∫ 2−x/2

0

dz dx dy in dx dz dy order.

A)

∫ 2

−2

∫ 2−y2/2

0

∫ 4−2z

y2
dx dz dy B)

∫ 2

−2

∫ 2−y2/2

0

∫ 4

y2
dx dz dy

C)

∫ 2

−2

∫ 2

0

∫ 4−2z

y2
dx dz dy D)

∫ 2

−2

∫ 2

0

∫ 4

y2
dx dz dy

[9] Find the maximum rate of change of f(x, y) = x2 − xe2y at the point (2, 0).

A)
√

6 B) 3 C) 5 D) 6

[10] Suppose f(x, y) is a differentiable function of x and y and let g(r, s) = f (2rs, 8s− 2r). Use
the table of values to calculate gr(2, 1).

(x, y) f fx fy

(2, 1) 2 −1 1
(4, 4) 3 2 3

A) 0 B) 1 C) −4 D) −2
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[11] In the figure below, straight lines represent level curves of a differentiable function f(x, y) and
the ellipse represents the constraint g(x, y) = 0. The absolute maximum of f(x, y) subject to
the constraint g(x, y) = 0

B
(∇f)B

A

(∇f)A A) could occur at point B but not at point A.

B) could occur at point A but not at point B.

C) could occur at point A and could occur at point B.

D) could not occur at point A and could not occur at point B.

[12] The absolute minimum of f(x, y) = x2 +4y2−4y over the line segment x = 2 with 0 ≤ y ≤ 2
equals

A) 3 B) −1 C) 4 D) 0

[13] Rewrite

∫ 2π

0

∫ √2

1

∫ √2−r2

−
√

2−r2
r dz dr dθ in spherical coordinates.

A)

∫ 2π

0

∫ 3π/4

π/4

∫ √2

1/ cosφ

ρ2 sinφ dρ dφ dθ B)

∫ 2π

0

∫ 3π/4

π/4

∫ √2

1/ sinφ

ρ2 sinφ dρ dφ dθ

C)

∫ 2π

0

∫ 3π/4

π/4

∫ √2

0

ρ2 sinφ dρ dφ dθ D)

∫ 2π

0

∫ 3π/4

π/4

∫ √2

1

ρ2 sinφ dρ dφ dθ
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