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[1] Which of the following integrals represents the volume of the solid that lies between z =
x2 + (y − 1)2 and z = 2− 2y?

A)

∫ 2π

0

∫ 1

0
(r − r3) dr dθ B)

∫ 2π

0

∫ 1

0
2(r − r2 sin θ) dr dθ

C)

∫ π

0

∫ 2 sin θ

0
(r − r3) dr dθ D)

∫ π

0

∫ 2 sin θ

0
2(r − r2 sin θ) dr dθ

[2] Suppose that for a vector function r(t) we know that r′(1) = 〈2, 2, −1〉 and the principal unit

normal vector is N (1) =
1

3
〈−1, 2, 2〉. What is B(1), the binormal vector when t = 1?

A)
1

3
〈−2, 1, −2〉 B)

1

3
〈2, 1, 2〉 C)

1

3
〈2, −1, 2〉 D)

1

3
〈−2, −1, −2〉
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[3] (x, y) f(x, y) fx(x, y) fy(x, y) fxx(x, y) fyy(x, y) fxy(x, y)
(0, 0) 1 0 0 3 2 1
(0, 1) 2 5 0 −2 −3 1
(1, 0) 0 1 4 2 4 0
(1, 1) −4 0 0 1 2 −2

Let f(x, y) be a function with continuous second partial derivatives. The table above shows

A) no local maximum and one local minimum of f .

B) one local maximum and no local minimum of f .

C) one local maximum and two local minima of f .

D) two local maxima and one local minimum of f .

[4] Which of the following integrals computes the volume of the solid region that lies below

z =

√
x2 + y2 and inside x2 + y2 + z2 = 4?

A)

∫ 2π

0

∫ π/4

0

∫ 2

0
ρ2 sinφ dρ dφ dθ B)

∫ 2π

0

∫ π/2

π/4

∫ 2

0
ρ2 sinφ dρ dφ dθ

C)

∫ 2π

0

∫ 3π/4

π/4

∫ 2

0
ρ2 sinφ dρ dφ dθ D)

∫ 2π

0

∫ π

π/4

∫ 2

0
ρ2 sinφ dρ dφ dθ

[5] Consider a circular cylinder whose radius r is increasing at the rate of 2 cm / min and whose
height h is decreasing at the rate of 1 cm / min. When the radius is 4 cm and height is 3
cm, at what rate is its volume V = πr2h increasing?

A) 24π cm3 / min B) 32π cm3 / min C) 40π cm3 / min D) 64π cm3 / min

[6] The level curves of f(x, y) = ex
2+2y−4 are

A) Ellipses B) Hyperbolas C) Exponential curves D) Parabolas
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[7] Let f(x, y) =
xy

x2 + y4 . Which of the following statements is true?

A) lim
(x,y)→(0,0)

f(x, y) does not exist because the limit along x = 0 does not exist.

B) lim
(x,y)→(0,0)

f(x, y) does not exist because limits along x = 0 and y = x exist but do not agree.

C) lim
(x,y)→(0,0)

f(x, y) does not exist because limits along x = 0 and y = x2 exist but do not agree.

D) lim
(x,y)→(0,0)

f(x, y) = 0.

[8] Compute

∫ 1

0

∫ 1

y
y
√

1− x3 dx dy.

A)
4

15
B)

8

15
C)

1

3
D)

1

9

[9] A line L through the point (1, 0, 2) is parallel to the line with vector equation

r(t) = 〈2, 4, 1〉+ t〈2, 3, −2〉.
Find the x-coordinate of the point where the line L intersects the plane x− 3y − z = 9.

A) −3 B) −4 C) −5 D) −6

[10] Rewrite

∫ 16

0

∫ √x
0

∫ 16−x

0
dz dy dx in the order dx dz dy.

A)

∫ 4

0

∫ 16−y2

0

∫ 16−z

y2
dx dz dy B)

∫ 4

0

∫ 16−y

0

∫ 16−z

y2
dx dz dy

C)

∫ 4

0

∫ √16−y

0

∫ 16−z

y2
dx dz dy D)

∫ 4

0

∫ 16

0

∫ 16−z

y2
dx dz dy
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[11] Each of the figures below shows the level surface F (x, y, z) = 0 and a vector. One of the
vectors points in the direction in which F increases fastest at point P . This should be

A) B) C) D)

[12] Consider the line L in R3 through the points A and B. Suppose P is a point not on L, and

Q is the point on L that is closest to P . Which of the following gives
∣∣−→AQ∣∣?

A)

∣∣−→AP · −→AB∣∣∣∣−→AB∣∣2 B)

∣∣−→AP · −→AB∣∣∣∣−→AB∣∣ C)

∣∣−→AP · −→AB∣∣∣∣−→AP ∣∣2 D)

∣∣−→AP · −→AB∣∣∣∣−→AP ∣∣

[13] At how many points do the spaces curves r1(t) = 〈t2, 1− t2, t+ 1〉 and r2(t) = 〈1− t2, t, t〉
intersect?

A) 0 B) 1 C) 2 D) 3

[14] At time t = 0 you start traveling along a curve C corresponding to a vector function r(t).
You know that r′(t) = 〈− sin t, cos t, 1〉. What is the distance you traveled along the curve
when t = π?

A)
√

4 + π2 B) π
√

2 C) 〈0, π, π〉 D) 〈−2, 0, π〉
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